
The INSERT Statement
The INSERT statement is used to add a new row or rows to a table. The basic syntax for the INSERT
statement is shown here:

INSERT [INTO] table_name [(column_list)] VALUES

expression | derived_table

The INTO keyword and the column_list parameter are optional. The column_list parameter specifies
which columns you are inserting data into; these values will have a one-to-one correspondence (in order)
with the values listed in the expression (which can be simply a list of values). Let's look at some
examples.

Inserting Rows

The following code example demonstrates how to insert a single row of data into the items table:

INSERT INTO items

(item_category, item_id, price, item_desc)

VALUES ('health food', 1, 4.00, 'tofu 6 oz.')

Because we specified a value for each column in the table and listed these values in the same order as
their corresponding columns were defined in the table, we would not have to use the column_list
parameter at all. But if the values were not in the same order as the columns, you could get the wrong
data in a column or receive an error. For example, if you try to run this next statement, you will get the
error message that follows it:

INSERT INTO items

VALUES (1, 'health food', 4.00, 'tofu 6 oz.')

Server: Msg 245, Level 16, State 1, Line 1

Syntax error converting the varchar value 'health food'

to a column of data type smallint.

This message is returned and the row is not inserted because we ordered the values incorrectly. We tried
to insert the item ID into the item_category column, and the item category into the item_id column. The
values were not compatible with the data types for those columns. If they had been compatible, SQL
Server would have allowed us to insert the row, whether or not the values were in the proper place.

To see how the one row that we inserted in the table appears, query the table to select all rows, by using
the following SELECT statement:

SELECT * from items

You will get the following result set:

item_category item_id price item_desc

--------------- ------- -------- ------------

health food 1 4.00 tofu 6 oz.



When the items table was created, the price column was defined to allow null values, and the item_desc
(description) column was assigned a default value of No desc. If no value is specified in the INSERT
statement for the price column, a NULL will be inserted in that column for the new row. If no value is
specified for the item_desc column, the default value No desc will be inserted in that column for the new
row.

Omitting Column Values

In the first sample INSERT statement in the preceding section, we could have omitted values as well as
column names for the columns price and item_desc because those columns have default values. If we
omit a value for a column, we must specify the remaining columns in column_list because otherwise, SQL
Server will match the listed values to the columns in the order in which the columns were defined in the
table.

For example, suppose we leave out the price column value and do not specify any value for column_list,
such as in this query:

INSERT INTO items

VALUES ('junk food', 2, 'fried pork skins')

SQL Server will attempt to insert the value given for item_desc (fried pork skins; the third value in the list
of values) into the price column (the third column in the table). An error will result because fried pork
skins is a char data type value, while price is a smallmoney data type. These are incompatible data types.
The error message will look something like this:

Msg 213, Level 16, State 4, Server NTSERVER, Line 1

Insert Error: Column name or number of supplied values

does not match table definition.

Imagine what could have happened to table integrity had fried pork skins been a value of a data type
compatible with the data type specified for price. SQL Server would have unknowingly inserted the value
into the wrong column, and the table data would have inconsistent data.

Remember that a value inserted in a table or view must be of a data type compatible with the column
definition. Also, if a row being inserted violates a rule or constraint, you'll get an error message from SQL
Server, and the insert will fail.

To avoid incompatible data type errors, order the names in column_list to match the order of the
corresponding values, as shown here:

INSERT INTO items

(item_category, item_id, item_desc)

VALUES ('junk food', 2, 'fried pork skins')

Because we did not specify the price, the price column will get a NULL for this row. Now execute the
following SELECT statement:

SELECT * FROM items

You should see the following result set (which now includes the two rows we inserted). Notice the NULL
in the price column.

item_category item_id price item_desc

--------------- ------- --------- ----------------

health food 1 4.00 tofu 6 oz.

junk food 2 NULL fried pork skins



Now let's add another row, without specifying values for either the price or the item_desc column, as
shown here:

INSERT INTO items

(item_category, item_id)

VALUES ('toys', 3)

The result set for this row alone can be found by using this query:

SELECT * FROM items WHERE item_id = 3

The result set will appear as follows:

item_category item_id price item_desc

--------------- ------- --------- -----------

toys 3 NULL No desc

Notice the NULL in the price column and the No desc in the item_desc column. You can change these
values by using the UPDATE statement, as you'll see later.

The four types of columns for which SQL Server will automatically provide a value when one is not
specified are columns that allow null values, columns with a default value, identity columns, and
timestamp columns. We have seen what happens with nullable columns and columns with default values.
An identity column gets the next available identity value, and a timestamp column gets the current
timestamp value. In most cases, you cannot manually insert data values into these two types of columns.

NOTE

Exercise caution when performing an INSERT operation on

a table. Be sure that the data you are inserting is being

put in its intended column. Make sure you thoroughly test

any T-SQL code before you use it to access or modify any

important data.


	The INSERT Statement
	Inserting Rows
	Omitting Column Values


